
Monitoring Support for Water Distribution Systems
based on Pressure Sensor Data

Caspar V. C. Geelen1 & Doekle R. Yntema2 & Jaap Molenaar3 & Karel J. Keesman1,2,3

Received: 12 November 2018 /Accepted: 19 March 2019 /
Published online: 6 July 2019
# The Author(s) 2019

Abstract
The increasing age and deterioration of drinking water mains is causing an increasing
frequency of pipe bursts. Not only are pipe repairs costly, bursts might also lead to contam-
ination of the Dutch non-chlorinated drinking water, as well as damage to other above- and
underground infrastructure. Detection and localization of pipe bursts have long been priorities
for water distribution companies. Here we present a method for proactive leakage control,
referred to as Monitoring Support. Contrary to most leak prevention methods, our method is
based on real-time pressure sensor measurements and focuses on detection of recurring
pressure anomalies, which are assumed to be indicative of misuse or malfunctioning of the
water distribution network. The method visualizes and warns for both recurring and one-time
anomalous events and offers monitoring experts an unsupervised decision support tool that
requires no training data or manual labeling. Additionally, our method supports any time series
data source and can be applied to other types of distribution networks, such as those for gas,
electricity and oil. The performance of our method, including both instance-based and feature-
based clustering, was validated on two pressure sensor data sets. Results indicate that feature-
based clustering is the best method for detection of recurring pressure anomalies, with
accuracy F1-scores of 92% and 94% for a 2013 and 2017 data set, respectively.
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1 Introduction

TheNetherlands has an excellent drinkingwater distribution system (WDS),withwater losses of only
6%, compared to 25% and 16% for the US and UK, respectively (Rosario-Ortiz et al. 2016). The
relatively good state of the Dutch drinkingwater infrastructure is in part caused by the replacement of
at least half of the distribution network since 1970, resulting in an average pipe age of 33 to 37 years,
compared to an estimated 75 to 80 years in the UK. Although the pipes are relatively new, the actual
state of the water mains is largely unknown. Pipe bursts regularly occur, causing damage to other
above- and underground infrastructure aswell as requiring costly repairs. TheDutch drinkingwater is
not chlorinated, whichmeans that contamination as a consequence of burstswill not be neutralized by
chlorine, therefore introducing more risk to consumers. In order to ensure proper functioning, water
companies need to assess the probability of failure and apply leakage control.

Currently, the probability of pipe failure is estimated based on pipe properties, historical
(failure) data and external conditions, with emphasis on reactive leakage control in the form of
leak detection and localization (Mounce et al. 2003; Puust et al. 2010; Bakker et al. 2014;
Gelazanskas and Gamage 2014; Okeya et al. 2015; Wu et al. 2016). However, to deal with the
unknown state and continuous degradation of pipes, a proactive strategy, with a focused on
leak prevention, is required. The objective of this study is therefore to present and evaluate a
method for proactive leakage control.

Although various leak detection methods have been developed and tested, leak prevention
methods have only recently been published (Wang et al. 2012; Xu et al. 2013; Kabir et al. 2015;
Leu and Bui 2016; Kakoudakis et al. 2017). Although powerful, these methods frequently rely on
supervised machine learning, requiring extensive data on pipe properties and external conditions.
However, these methods often do not incorporate available real-time pressure and flow sensor
data. Moreover, internal pipe conditions and grid management can also play a role in asset failure.
In addition to extensive data sets, for the training of supervised models, classification labels are
also required. Lastly, since these methods mostly use historical data, real-time implementation
was not considered.

Our method focuses on proactive leakage control and offers an early warning and decision
support system for proactive management of the WDS, which helps to prevent future bursts and
malfunctioning. Contrary to the previously mentioned leak prevention studies, our method is based
on real-time sensor data only, detecting recurring pressure anomalies which are indicative of misuse
or malfunctioning within the WDS. Additionally, our method provides monitoring experts with an
unsupervised decision support tool that requires no training data or manual labeling. Unsupervised
learning is particularly suited for recurring pattern detection due to its robustness regarding detection
of novel recurring patterns (Kotsiantis and Pintelas 2004). Clustering of anomalies allows detection
of clusters containing a common recurring pattern. In this paper, both instance-based and feature-
based clustering is applied to two pressure data sets from the Dutch drinking water company Vitens.
Lastly, our method supports any time series data and can be applied to other distribution networks,
such as those for gas, electricity or oil.

2 Materials & Methods

The detection of anomalous and recurring pressure patterns is divided into three steps:
detection of anomalous events (Fig. 1a), clustering of events (Fig. 1b) and visualization of
recurrence history (Fig. 1c).
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Fig. 1 Flowchart of Monitoring Support. aMeasured time series subjected to anomaly detection (six anomalous
events). Whenever a new anomalous event is detected, windows of a preset number of preceding events are
created (solid, dashed and dotted windows with four events per window in this example). These windows are
then subjected to b moving window clustering, resulting in two clusters (star and circle) and outliers (black
cross). c Clustering results are then summarized in fingerprint graphs, stacked area plots with time of event
detection on the horizontal axis and frequency of pattern occurrence per cluster on the vertical axis
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2.1 Data Sets

Access to actual and historical pressure sensor data was provided by Vitens, a Dutch drinking water
company. A known case of recurring anomalous pressure patterns followed by a pipe burst was
investigated from 1/6/2012 to 1/6/2013, hereafter referred to as the 2013 data set. In addition, a recent
data set from another pressure sensor is used, with measurements from 18/5/2017 to 17/11/2017,
hereafter referred to as the 2017 data set. Both pressure sensors were situated close towater reservoirs.

As a preprocessing step, erratic measurements were removed. Resampling and linear
interpolation in time were used to obtain a constant sampling interval of one second.

2.2 Event Detection

Anomalous events were detected using a moving window range statistic, defined as the
difference between maximum and minimum values of every ten-seconds moving window,
divided by the window size of ten seconds. A ten-seconds window range statistic was used
instead of the derivative, so as to avoid problems associated with noise present in the pressure
measurements. Measurements with a range statistic of more than two kPa/s were flagged as
anomalous (Fig. 1a), since rapid pressure changes of this magnitude are most often caused by
events that are relevant for the purposes of this study. Although quite simple, the range statistic
and absolute range threshold were found to be able to detect all relevant anomalous events.
Since anomaly detection is an important and complicated process, a more extensive definition
of anomaly detection will most likely improve performance (Branisavljević et al. 2011;
Mounce et al. 2014; Scozzari and Brozzo 2017). However, for illustration of our method on
the aforementioned data sets, the current metric is sufficient and suitable.

The anomalies were combined into events, where anomalous measurements within a
15 min duration were considered to be part of one event (Fig. 1a). Next, each event was
extended with two minutes of preceding and two minutes of succeeding measurements to
ensure the entire anomaly and context were captured as a single event.

2.3 Event Clustering

Recurrence of anomalous pressure patterns was defined as the repetition of similar anomalous
events. Events were clustered in order to detect which events are similar and probably have the
same cause. Clustering is an unsupervised method for grouping of similar events based on the
distances between events. For this, events were represented by vectors, after which the distance
between these vectors can be calculated. Events with a low distance between them are deemed
similar and were included in the same cluster. Each cluster corresponds to a specific recurring
and anomalous pattern (Fig. 1b). The vectors assigned to each event were based either on event
measurements (instance-based) or on each event’s characteristic features (feature-based)
(Fulcher and Jones 2014).

In this study, clustering was performed using Hierarchical Density-Based Spatial Clustering
of Applications with Noise (HDBSCAN) (McInnes et al. 2017), which clusters events based
on their density within a vector space. Unlike similar clustering methods, such as DBSCAN
(Ester et al. 1996) and Mean Shift (Ray and Benammar 2002), HDBSCAN uses a hierarchical
minimum density threshold and is better in detecting varying cluster shapes. HDBSCAN also
allows clustering with a precomputed distance matrix and has the capacity to distinguish core
samples from outliers.

3342 Geelen C.V.C. et al.



Since the presented method is intended for real-time application, clustering needs to be
performed anew when novel events are detected. Clustering was performed over the most
recent 150 events using a moving window of these events whenever a new anomalous event
was detected (Fig. 1b). This moving window approach ensures real-time applicability and
detection of distinct clusters for the different recurring patterns present in the investigated data.
The window size can be adjusted if requested. However, larger window sizes potentially result
in merging of clusters due to a higher overall density of events, making the distinguishing of
local denser areas more difficult. Smaller window sizes might result in failure to detect
recurring patterns with a low frequency of occurrence.

2.4 Distances for Instance-Based Clustering

In order to calculate the distance between two event vectors of different lengths, the vectors are
clipped to equal lengths. Clipping was done based on the maximum cross-correlation between
both events (Fig. 2b). For every pair of event time series, the lag related to the maximum cross-
correlation was removed (Fig. 2a), followed by clipping of the non-overlapping tails of both
events (Fig. 2a) to obtain events of equal length (Fig. 2c).

Optionally, Dynamic Time Warping (DTW) can then be applied in order to correct for
temporal drift, which increases the accuracy of the succeeding distance calculations (Fig. 2d)
(Aghabozorgi et al. 2015). In this study, DTW was limited to warping of up to 5% of the total
event duration in both directions. After clipping and DTW, the Euclidean distance between
events was calculated and corrected by dividing by the length of the events before being
subjected to clustering.

2.5 Distances for Feature-Based Clustering

For each event, 43 features were calculated (Appendix 1, Table 1). In each clustering window
of 150 events, the features of these events were scaled by median subtraction followed by
interquartile range division, ensuring that scaling was robust for outliers.

The features were chosen so as to be robust for distinguishing between a limited number of
recurring patterns. After scaling, the distances between each event pair’s feature vectors were
calculated and the resulting distance matrix was subjected to the clustering method.

2.6 Fingerprint Graphs

Fingerprint graphs (Fig. 3) present an effective overview of the periods of recurrence for
different type of patterns and their respective frequency of occurrence. When a new anomalous
event is detected, the clustering results of the corresponding 150-event window is added to the
fingerprint graph as a vertical white slice. Each colored area depicts a recurring pattern, where
each pattern’s height depicts its frequency of occurrence within the 150-event window and its
length corresponds to the duration of the pattern recurrence (Fig. 1c).

2.7 Validation Report

The validation report depicts the precision (fraction true positives among detected
positives), recall (fraction of true positives among actual positives) and F1-score (2 ∗
precision ∗ recall/(precision + recall)) for each true recurring pattern present in the
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manually labeled validation data (van Rijsbergen 1979). In order to calculate these
scores, cluster ID numbers were mapped to the validation labels. Clusters mapping to
the same pattern were deemed a single cluster for the sake of accuracy scores
calculation only.

(a)

(b)

(c)

(d)

Fig. 2 a Time series clipping based on maximum cross correlation of standardized events. b Cross correlation
between both events. c Events A and B after clipping and c) before and d after Dynamic Time Warping

Fig. 3 Example fingerprint graph, showing the recurring anomalous pressure patterns as different areas in the
stacked area graph. Each legend entry number matches a separate cluster. The bottom, black area with legend
entry −1 represents outlier events, which are deemed non-recurring
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3 Results

The method was applied to pressure data of theWDS of Vitens. In order to validate the method,
a known case of pressure pattern recursion leading to a pipe burst was investigated, as well as a
more recent data set from 2017. The data set from 2013 contains a rapid crack propagation event
at 2013/03/12 18:03 (Fig. 4). The pipe in question was already under strain due to angular
displacement and sub-zero temperatures. However, afterwards it was concluded that the burst
probably occurred due to pressure oscillations caused by the interaction of two upstream pumps
connected in parallel. Repeated activation and deactivation of these pumps led to these
recurring oscillations, which had been occurring for over two months before the coincidence
with sub-zero temperatures and additional pipe stress caused by traffic led to a burst.

To prevent future malfunctioning and to obtain more insight into the behavior inside the
pipes, we developed a method functioning as a real-time decision support and early warning
system for recurring unwanted pressure patterns. By timely detection of recurring anomalous
pressure patterns, the 2013 pump malfunction could have been identified earlier and the pipe
burst might have been prevented. As a proof of concept, our method has been applied to the
2013 (Fig. 5 and 6) and 2017 data sets (Fig. II-1, Fig. II-2, Appendix 2) using instance-based
clustering with and without DTWand feature-based clustering. In order to assess the real-time
performance of the method, it was applied to the 2013 and 2017 data sets with moving
windows, as a stand-in for real-time application.

When a novel anomalous event was detected in the pressure time series data of a sensor, the
most recent 150 events time window was again clustered. Events that belong to the same cluster
were assumed to be part of the same recurring anomalous pressure pattern. Based on the
manually labeled validation data (Fig. 5d), there are fivemain types of recurring patterns present
in the 2013 data set (labeled as fast oscillation, oscillation, slope, spike and valley) (see Fig. 6).

As mentioned before, the 2013 burst (Fig. 4) probably happened because of recurring
pressure oscillations (Fig. 6, Oscillation), which in turn were caused by erroneous behavior of
two pumps upstream of the sensor. Without having this prior knowledge, our method detects
these oscillations and so would have provided an early warning of the problem months in
advance of the eventual burst.

Besides the oscillations, four other recurring patterns are detected. The fast oscillation events
most probably occurred as a consequence of rapid pump activation and deactivation. The slope
pattern (Fig. 6: Slope) consists of rapid pressure increases due to increased pumping activity.
The slope events occur mostly in the early morning, where rapid pump activations cause the
pressure to rise to a higher pressure than is necessary, before gradually decreasing again. The

Fig. 4 Pressure sensor data from the 2013 data set containing the pipe burst at 12-03-2013 18:03

Monitoring Support for Water Distribution Systems based on Pressure... 3345



spike pattern (Fig. 6: Spike) consists of pressure transients, caused by rapid pump, valve or
water consumption changes. Pressure transients may cause (gradual) degradation and defor-
mation of pipes, connections or valves (National Research Council 2006). Lastly, the valley
patterns (Fig. 6: Valley) consists of short pressure drops where for a short period of time water
diversion or increased water consumption causes temporary but considerable pressure drops.

4 Discussion and Conclusions

The fast oscillations events show a large variation between them (Fig. 6). Consequently, both
instance-based methods and the feature-based method show a lower recall for fast oscillations
compared to other patterns (Fig. 5, validation reports). Besides a lower recall, our method often
detects multiple clusters matching the fast oscillation recurring pattern, due to the large
variation between various fast oscillation events. (Fig. 5b fingerprint graph clusters 1,2 and
8 all correspond to the fast oscillation pattern. The same is true for Fig. 5c clusters 3 and 6.)

4.1 Method Comparison

Most spike events closely resemble half a period of an oscillation event, resulting in a small
instance-based clustering distance between these events, especially after event clipping. This
phenomenon is reflected in the low accuracy of spike detection for instance-based clustering
without and with DTW (Fig. 5ab: F1-scores of 0.62 and 0.00, respectively), as opposed to the high
accuracy using feature-based clustering (Fig. 5c: F1-score of 0.93). To some extent, the same
occurs for slope events resembling parts of valley events (Fig 5abc: slope F1-scores of 0.61 and

Method Fingerprint Graphs Validation Report

(a) 
Instance-

Based 

Clustering

Precision Recall F1-Score Support
Fast Oscillation 1.00 0.10 0.18 108

Oscillation 0.75 0.73 0.74 113

Slope 0.71 0.53 0.61 45

Spike 0.89 0.47 0.62 51

Valley 0.00 0.00 0.00 17

Average / Total 0.81 0.42 0.49 334
(b) 
Instance-

Based 

Clustering

with DTW

Precision Recall F1-Score Support
Fast Oscillation 1.00 0.38 0.55 108

Oscillation 0.71 0.83 0.76 113

Slope 0.75 0.53 0.62 45

Spike 0.00 0.00 0.00 51

Valley 0.00 0.00 0.00 17

Average / Total 0.66 0.48 0.52 334
(c) 
Feature-

Based

Clustering

Precision Recall F1-Score Support
Fast Oscillation 0.99 0.90 0.94 108

Oscillation 1.00 0.91 0.95 113

Slope 0.95 0.89 0.92 45

Spike 0.94 0.92 0.93 51

Valley 1.00 0.53 0.69 17

Average / Total 0.98 0.89 0.93 334
(d) 
Manual 

Labeling,

Reference 

for 

Validation

Fig. 5 Results of the 2013 data set for instance-based clustering without DTW (A), with DTW (B),
feature-based clustering (C) and validation using manual labeling (D). As can be seen from the
validation labeling (D), five different recurring patterns are found in the data set, referred to as fast
oscillation, oscillation, slope, spike and valley. The legend lists the cluster ID number and which
pattern matches best with that clusters ID, as derived from the manually labeled validation data.
Clusters numbers mapping to the same recurring pattern, were deemed a single cluster for the sake of
accuracy scores calculation only
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0.62 for instance-based with and without DTW, respectively, versus 0.92 for feature-based
clustering). Because of this low distance between parts of both patterns, instance-based clustering
is less suitable for distinguishing oscillation and spike events compared to feature-based clustering,
which does not rely on the distances between events as calculated for instance-based clustering.

Like fast oscillations, there is a large variation between the valley events. Additionally, only
17 out of the 334 events in the 2013 data set represent valleys. As a result, instance-based
clustering is unable to detect the valley recurring pattern (Fig. 5ab: F1-scores 0.00 and 0.00 for
with DTW and without DTW instance-based clustering) and feature-based clustering shows a
low recall of 0.69 for valley detection (Fig. 5c).

Since an unsupervised approach was taken in this study, novel patterns that did not occur in
the past could still be detected successfully, such as the oscillation pattern seen in the 2017 data

Pattern Example 1 Example 2 Example 3

Fast 

Oscillation

Oscillation

Slope

Spike

Valley

Fig. 6 Examples of the recurring patterns present in the 2013 data set
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set (Fig. II-1, Fig. II-2, Appendix 2). Not only do new patterns occur as time progresses, the
types of patterns detected also differ widely between sensors, as can be seen when comparing
the 2013 and 2017 data set results. Consequently, an unsupervised method is considered the
most suitable approach for detecting pattern recurrence in sensor data.

Feature-based clustering requires a suitable selection of features capable of distinguishing
recurring patterns. As a consequence of the unsupervised approach, it is not possible to
automatically choose a set of features most suited for grouping pressure anomalies or to weigh
features based on suitability. Therefore, additional care is required for initial feature selection.
However, even though the 2013 and 2017 data sets differ widely in recurring patterns present,
the currently selected features show high accuracies detecting and distinguishing between
recurring patterns (Fig. 5, Fig II-1, Appendix 2). Feature-based clustering also outperforms
instance-based clustering, as can be seen from the F1-scores of 0.93 and 0.94 for feature-based
clustering of the 2013 and 2017 data sets, compared to 0.49/0.82 and 0.52/0.80 for the
no DTW/DTW instance-based clustering of 2013 and 2017 data sets, respectively (Fig. 5,
Fig II-1, Appendix 2). This indicates that the currently chosen set of features are robust for
clustering 150 event windows (Fig. I-1, Appendix 1).

4.2 Method Performance

Our method fills the gap for real-time sensor-based and proactive leakage control methods.
Besides recurrence detection, the method offers an easy framework for monitoring pressure
measurements. Our method finds all anomalous pressure events and detects which contain a
recurring pattern. The method can isolate, visualize and summarize both recurring and one-
time events and so helps to determine the cause and potential consequences of the aberrant
pressure events. Combined with an unsupervised approach, our method represents a powerful
tool that alleviates the grid monitoring workload of monitoring experts.

Overall, our method shows promising results regarding recurrence detection and visualiza-
tion. Although only the performance with time series data from pressure sensors was inves-
tigated, flow data or data from other distribution systems can also be used. By choosing a
suitable anomaly detection method, our method can be applied to any time series data where
recurrence of unwanted or artificial patterns might occur.

Our application to real data shows that feature-based clustering is the preferred method for
detecting recurring pressure anomalies. This implies that selection of these features is a crucial
ingredient of this approach. Implementation of our method and/or testing more data sets will
allow reevaluation of chosen features over time, if required. However, since an average
accuracy F1-score of 93.5% was achieved with the current feature-based unsupervised method,
current features show robustness for clustering of 150 event windows.
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Appendix 1

Table 1 Features used for feature-based clustering (Schreiber and Schmitz 1997; Fulcher and Jones 2014; Christ
et al. 2018)

Features Description

max Maximum of the event measurements
min Minimum of the event measurements
std Standard deviation of the event measurements
skew Unbiased skewness, normalized by N-1
kurt Unbiased kurtosis using Fisher’s definition of kurtosis, normalized by N-1.
diff_mean Mean of the first order derivative of the event measurements
diff_skew Unbiased skewness, normalized by N-1, of the first order derivative of the event

measurements
diff_std Standard deviation of the first order derivative of the event measurements
lin_appr_slope Slope estimate p1 from a linear least squares fit (y = p1x + p2)
lin_appr_intercept Intercept estimate p2 from a linear least squares fit (y = p1x + p2)
cub_appr_x1 Polynomial coefficient estimate p1 from a cubic least squares fit through the sorted data

(y = p1x3 + p2x2 + p3x + p4)
cub_appr_x2 Polynomial coefficient estimate p2 from a cubic least squares fit through the sorted data

(y = p1x3 + p2x2 + p3x + p4)
cub_appr_x3 Polynomial coefficient estimate p3 from a cubic least squares fit through the sorted data

(y = p1x3 + p2x2 + p3x + p4)
cub_appr_intercept Intercept estimate p4 from a cubic least squares fit through the sorted data

(y = p1x3 + p2x2 + p3x + p4)
slope_appr Difference between initial and final event value divided by the number of seconds between
std_0.5 Fraction of event measurements larger than 0.5 times the standard deviation
std_1.0 Fraction of event measurements larger than 1 times the standard deviation
std_1.5 Fraction of event measurements larger than 1.5 times the standard deviation
domfreq_0.000 Dominant Power Spectral Density frequency
domfreq_0.003 Dominant Power Spectral Density frequency above 1/300 s−1

domfreq_0.008 Dominant Power Spectral Density frequency above 1/120 s−1

domfreq_0.017 Dominant Power Spectral Density frequency above 1/60 s−1

psdbin_1 Power Spectral Density average between frequencies 1/600 and 1/103 s−1

psdbin_2 Power Spectral Density average between frequencies 1/103 and 1/56 s−1

psdbin_3 Power Spectral Density average between frequencies 1/57 and 1/39 s−1

psdbin_4 Power Spectral Density average between frequencies 1/39 and 1/30 s−1

psdbin_5 Power Spectral Density average between frequencies 1/30 and 1/24 s−1

acorr_5 Autocorrelation with a lag of 5 s
acorr_10 Autocorrelation with a lag of 10 s
acorr_15 Autocorrelation with a lag of 15 s
acorr_30 Autocorrelation with a lag of 30 s
acorr_60 Autocorrelation with a lag of 60 s
domacorr_0.50 Fraction of autocorrelation function above than 50%
domacorr_0.65 Fraction of autocorrelation function above than 65%
domacorr_0.80 Fraction of autocorrelation function above than 80%
domacorr_0.90 Fraction of autocorrelation function above than 90%
domacorr_0.95 Fraction of autocorrelation function above than 95%
c3_lag_5 Time series non-linearity measure using a lag operator of 5 s
c3_lag_10 Time series non-linearity measure using a lag operator of 10 s
c3_lag_15 Time series non-linearity measure using a lag operator of 15 s
tras_lag_5 Time reversal asymmetry statistic using a lag operator of 5 s
tras_lag_10 Time reversal asymmetry statistic using a lag operator of 10 s
tras_lag_15 Time reversal asymmetry statistic using a lag operator of 15 s
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Fig. I-1 Feature performance evaluation for the 2013 and 2017 data set. After feature calculation for all events
within a single data set, each feature was standardized. For each pattern present in the manually labeled
validation, a box plot of feature values was made per pattern. Features showing well-separated pattern-specific
box plots with low variation within the events of a single pattern are most suitable for separating the patterns
present in the investigated data set. As can be derived from the box plots and validation reports of the 2013 and
2017 data sets (Fig. 5, Fig. II-1, Appendix 2), current features are deemed suitable and robust for the intended
goal of detecting recurrence of anomalous patterns
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Appendix 2
Method Fingerprint Graphs Validation Report

(a) Instance-

Based 

Clustering

Precision Recall F1-Score Support
Fall 0.93 0.77 0.84 164

Oscillation 0.00 0.00 0.00 25

Rise 0.91 0.92 0.91 160

Average / Total 0.85 0.79 0.82 349

(b) Instance-

Based 

Clustering

with DTW

Precision Recall F1-Score Support
Fall 0.94 0.78 0.85 164

Oscillation 0.00 0.00 0.00 25

Rise 0.83 0.94 0.88 160

Average / Total 0.82 0.80 0.80 349

(c) Feature-

Based

Clustering

Precision Recall F1-Score Support
Fall 0.96 0.93 0.94 164

Oscillation 1.00 0.80 0.89 25

Rise 0.95 0.93 0.94 160

Average / Total 0.96 0.92 0.94 349

(d) Manual 

Labeling, 

Reference 

for 

Validation 

 

 

Fig. II-1 Results of the 2017 data set for instance-based clustering without DTW (A), with DTW (B), feature-
based clustering (C) and validation using manual labeling (D). As can be seen from the validation labeling (D),
three different recurring patterns are found in the data set, referred to as rise, fall and oscillation. The legend lists
the cluster ID number and which pattern matches best with that clusters ID, as derived from the manually labeled
validation data. Clusters numbers mapping to the same recurring pattern, were deemed a single cluster for the
sake of accuracy scores calculation only

Pattern Example 1 Example 2 Example 3

Rise

Fall

Oscillation

Fig. II-2 Examples of the recurring patterns present in the 2017 data set
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