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Abstract

In this work, we develop an extended uniform potential (UP) model for a membrane nanopore

by including two different charging mechanisms of the pore walls, namely by electronic charge and

by chemical charge. These two charging mechanisms will generally occur in polymeric membranes

with conducting agents, or membranes made of conducting materials like carbon nanotubes with

surface ionizable groups. The electronic charge redistributes along the pore in response to the

gradient of electric potential in the pore, while the chemical charge depends on the local pH via

a Langmuir-type isotherm. The extended UP model shows good agreement with experimental

data for membrane potential measured at zero current condition. When both types of charge

are present, the ratio of the electronic charge to the chemical charge can be characterized by

the dimensionless number of surface groups and the dimensionless capacitance of the dielectric

Stern layer. The performance of the membrane pore in converting osmotic energy from a salt

concentration difference into electrical power can be improved by tuning the electronic charge.

I. INTRODUCTION

Many porous membranes bear charge on the surface of their pore walls. Often this

charge is due to the polymeric or inorganic membrane material, which can (de)protonate to

leave a charged surface group [1, 2]. The chemical nature of the charge is determined by the

equilibrium between the surface groups and solution, which typically has a strong dependence

on pH. In other materials where the pore walls are conductive, the membrane can be charged

electronically [3, 4]. Sometimes, both chemical charge and electronic charge can exist at

the same time: either by introducing ionizable charged groups on conducting materials, or

adding conducting agents, such as carbon nanotubes, in polymeric membranes [5–8]. The

electrostatic effect of these surface charge plays a significant role in modulating transport

of ionic species through the membrane, and has been engineered to provide new approaches

for energy conversion [9, 10], desalination [11], separation [12], fabrication of ion field-effect

transistors [7, 13] and mimicking biological cell membranes [14].

The nature of the electronic and the chemical charge is very different. The total electronic
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charge in the pore walls will be a conserved quantity when there is no electron supply or

leakage via the external circuit or due to a Faradaic reaction. Still, the electronic charge

will redistribute over the pore length to ensure that the electronic potential is the same

everywhere, i.e., to achieve an equipotential pore wall surface. This redistribution can lead

to regions of negative and positive charge, i.e., the membrane pore is polarized, similar to

the polarization of conducting particles [15] and porous carbons [16]. The chemical charge,

however, has a very different origin and only depends on the composition of solution and the

pore wall chemistry. In a typical scenario, the hydronium ion (proton) is the most common

charge-determining ion and thus the chemical charge usually has a strong dependence on the

local pH in the pore. Dynamics of surface (de)protonation is usually much faster compared

with dynamics of ion transport, and thus instantaneous chemical equilibrium is commonly

assumed for the generation of chemical charge (charging dynamics may be important in

certain cases, for example, [17]). For a steady-state transport problem, even if the chemical

equilibrium on the surface is only slowly established, we can still describe the chemical

charge by an equilibrium adsorption model, such as the Langmuir isotherm.

In general, both types of surface charge are nonuniformly distributed along the pore. To

ensure equipotential on the pore wall, the electronic charge is redistributed to compensate for

the non-uniform potential distribution in the solution of the pore interior. Meanwhile, the

chemical charge varies with the pH in the solution. The distribution of the surface charge will

strongly influence the transport of ions and the performance of the membrane. Some simple

scenarios of varying surface charge have been studied, for example, a step-wise distribution

for asymmetric membranes [18] and a linear distribution [19]. However, this effect is still

far from being well-understood, manifested by the prevailing assumption of constant surface

charge in modeling ion transport in the membrane, both within the two-dimensional space

charge (SC) model [20–22], and the one-dimensional uniform potential (UP) model [23–25].

In this work, we extend the UP model by incorporating both the electronic charge (induced

by the electric field in the pore solution) and the chemical charge (determined by local pH)

to investigate the effect of surface charge on transport of ions through the membrane.

The distribution of surface charge along the membrane pore strongly affects membrane

transport properties, such as the membrane potential, which is the potential difference be-

tween two electrolyte solutions with different salt concentrations separated by the membrane.

In the present work, we consider the membrane potential at a condition of zero ionic current.
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FIG. 1. Structure of the electrical double layer with electronic and chemical charge on the pore

wall and ionic charge in the solution.

The measurement of membrane potential is useful in characterizing the ionic permselectivity

of ion exchange membranes [26], interpreting the measurement of potentiometric ion sens-

ing [27], evaluating the maximum power that can be generated in reverse electrodialysis

(RED) [28, 29], and modulating cellular activities as a key biophysical signal in biological

cell membranes [30]. Conventionally, the membrane potential is ascribed to the two Donnan

potentials due to the electrical double layers at the membrane-solution interfaces and the

diffusion potential within the membrane due to different mobilities of ions [31, 32]. Recently,

Ryzhkov et al. [33] reported a new mechanism for the generation of membrane potential in

polarizable conductive membranes via the induced electronic charge. The re-distribution of

electronic charge enhances the membrane potential when there is a difference in mobilities

between the cation and anion. In the present work, we demonstrate that our extended UP

model can quantitatively capture this effect for small pores by comparing with the experi-

mental data and the results of the full two-dimensional space charge model. Moreover, we

show that the variation of chemical charge due to gradients in the proton concentration also

contributes to a potential difference within the membrane, and gives rise to a decrease of

membrane potential at large salt concentration ratios, which has been observed in previous

work [25, 34], but has not yet been explained. In addition, for cases with both electronic and
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chemical charge, we propose a dimensionless parameter to quantify the ratio of the electronic

charge to the chemical charge and study the performance of the membrane in generating

osmotic power from a salt concentration difference by a reverse electrodialysis process.

Our paper is organized as follows: the framework of our model is introduced in Section

2, the main results and analysis are presented in Section 3, where we discuss first the case

of only electronic charge, then the case of only chemical charge, and finally the general case

where both types of charge play a role. Section 4 concludes the work.

II. THEORETICAL MODEL

Let us consider a membrane separating two reservoirs with aqueous solutions of the

same monovalent and symmetric (1:1) electrolyte of concentrations Ch and Cl, respectively

(Ch > Cl). The reservoirs are maintained at equal hydrostatic pressures. The membrane is

modelled as an array of pore channels of length Lp and characteristic pore sizeHp. Depending

on the cross-sectional geometry, Hp corresponds to the radius for a cylindrical pore, or the

width of a planar channel for a slit pore. We assume that at each position along the pore,

the Debye length λD is of the same order of, or larger than, the characteristic size Hp. The

Debye length follows from λD =
√
εε0RgT/2F 2C0, where εε0 is the dielectric constant of the

solution, Rg is the ideal gas constant, T is temperature, F is the Faraday constant and C0

is the characteristic concentration in the problem. In this case, electric potential Φ, cation

concentration C+ and anion concentration C− as well as hydrostatic pressure P can be

assumed uniform in any cross–section of the pore, so they are functions of axial coordinate

only. This approach is known as the uniform potential (UP) model or the ”fine capillary

pore model” and is sometimes called the Teorell-Meyer-Sievers (TMS) model [35], though

the TMS model does not include fluid flow. The UP model is a simplification of the space

charge model, which solves the 2D Navier–Stokes (NS) and Poisson–Nernst–Planck (PNP)

equations using the approaches of virtual variables, i.e., hypothetical variables of a solution

equilibrated with adjacent differential elements of the membrane [20–22, 36, 37].

As shown in Fig. 1, we consider two charging mechanisms at the surface of the membrane

pores: the electronic charge σe [C/m2] in the electron-conducting pore wall, and the chemical

charge σc [C/m2] originating from the deprotonation of surface groups S (e.g., hydroxylic or
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carboxylic groups) according to a reversible reaction

SH� S− + H+ .

The equilibrium is characterized by the dissociation constant K and the maximum number

of ionizable sites N per m2,

K = [S−]{H+}
/

[SH] , (1a)

N = [SH] + [S−] , (1b)

where [SH] and [S−] are the surface concentrations of non–ionized and ionized surface groups,

while {H+} is the proton concentration near the pore surface, which is also denoted as CH+

below. Combining Eqs. (1) leads to the density of chemical surface charge described by the

well-known Langmuir 1–pK adsorption isotherm

σc = −e [S−] = −eN 1

1 + 10pK−pH
, (2)

where e is the elementary charge, pK = − log10K and pH = − log10 CH+ with K and CH+

in the unit of M, i.e., mol/L.

It is further assumed that the chemical charge is located at the interface between a

dielectric layer, which is referred to as the Stern layer, and the diffuse layer, and thus

separated from the electronic charge in the conductive pore wall. Similar models including

both ionic and electronic charging processes have been developed for capacitive deionization

in [38], for electrofluidic gating of chemically reactive surface in [7, 39, 40] and for oxidized

metal or semiconductive oxides in [41, 42].

The electronic charge induced at the pore wall is given by a linear relation considering

that no charge exists inside the dielectric Stern layer,

σe = CS (Φw − Φs) , (3)

where Φw is the potential in the electronic conducting pore wall, and Φs is the potential at

the Stern plane, which is the intersection of the Stern layer and the diffuse layer. In the UP

model, Φs coincides with the potential throughout the aqueous phase in the pore (Φs = Φ),

see Fig. 1, while CS is the capacitance of the Stern layer, which is expected to depend on

the permittivity εs, thickness δ, and geometry of the Stern layer. The total surface charge

entering the electroneutrality condition is σ = σc + σe, and the corresponding volumetric
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density of the wall charge is given by 2σ/FHp. If there are no chemical surface groups, i.e.,

N = 0 and thus σc = 0, the surface can only be charged electronically so that σ = σe, while

in the other limit, the electronic charge is set to zero along the pore and σ = σc. In addition,

the present model treats the chemical charge as a smeared-out surface charge, and we do not

consider its point-like character. This is a reasonable approximation as long as the surface

charge density is relatively large, but may fail for low charge density such as biological lipid

membranes, where a point-charge model for the chemical charge has to be employed [43].

To proceed further, let us introduce dimensionless variables by choosing the characteristic

scales for length Lp, for potential ΦT = RgT/F , for concentration and volumetric charge

density C0, for pressure C0RgT , for fluid velocity D/Lp and for ion fluxes DC0/Lp. Here

D =
√
D+D− is the average diffusion coefficient, where D+ and D− are the cation and anion

diffusion coefficients. The chemical and electronic charge densities in dimensionless form are

written as

Xc =
2σc

C0FHp

= − N
1 + 10pK−pH

, (4a)

Xe =
2σe

C0FHp

= cS (φw − φ) , (4b)

whereN = 2N(C0NAHp)
−1 is dimensionless density of surface group sites, cS = 2CSRgT (C0F

2Hp)
−1

is dimensionless Stern layer capacitance and φw and φ are dimensionless potentials corre-

sponding to Φw and Φ. The averaged electronic charge along the pore length is defined as

Xe =
∫ 1

0
Xe dz. When the membrane is not charged externally by injecting or withdrawing

electrons to or from the conductive membrane pore walls, one has Xe = 0. However, even

then the local value Xe(z) can be non–zero since electrons are redistributed along the surface

in order to ensure equipotential in the pore wall [33, 44]. The volumetric density of wall

charge is X = Xc + Xe, which is opposite in sign to the density of ionic charges c+ − c− in

the pore because of total charge neutrality

c+ − c− +X = 0, (5)

where we have assumed that the concentrations of H+ and OH– are much lower than the

concentrations of cations and anions arising from salt dissociation, so that their presence is

not taken into account in the electroneutrality condition (5) and neither in the total ionic

flux and ionic current.
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The equations of the UP model for transport of water and ions at steady-state with

unequal diffusion coefficients and variable surface charge are given by [45]

u = − 1

Θα

dp

dz
+

X

Θα

dφ

dz
, (6a)

js = cT u− cosh(ξ)
dcT
dz
− sinh(ξ)

dX

dz
+
(

cosh(ξ)X + sinh(ξ) cT
)dφ

dz
, (6b)

jch = −X u+ sinh(ξ)
dcT
dz

+ cosh(ξ)
dX

dz
−
(

cosh(ξ) cT + sinh(ξ)X
)dφ

dz
. (6c)

where u is the fluid velocity along the pore direction z, js = j+ + j− is the total solute

flux of cations and anions, jch = j+ − j− is the flux of the ionic charge, cT = c+ + c− is

the total concentration of cations and anions, p is the dimensionless hydrostatic pressure,

α = µD (C0RgTH
2
p )−1 is the dimensionless viscosity parameter with µ the fluid viscosity,

and ξ = ln(
√
D−/D+) is a factor accounting for the effect of unequal diffusion coefficients.

A shape factor Θ is introduced to account for different cross-sectional geometries: Θ = 8

for cylindrical pore and Θ = 12 for slit-shaped pore. Note that u, js and jch are constants

along the pore in the current model, while for a dynamic problem, u and jch are still in-

variants due to the continuity of fluid flow and electric current, but js will vary along the

pore. Furthermore, we neglect the possible relevance of upstream and downstream diffusion

boundary layers [45].

To account for the variation of the chemical charge determined by the local pH in the

solution, we need to supplement equations (6) by the transport equations of H+ and OH–

ions including advection, diffusion, and electromigration [46],

jH+ = cH+ u−D′H+

(
dcH+

dz
+ cH+

dφ

dz

)
, (7a)

jOH− = cOH− u−D′OH−

(
dcOH−

dz
− cOH−

dφ

dz

)
, (7b)

where jH+ and jOH− are the dimensionless fluxes of H+ and OH– scaled by DC0/Hp, D
′
H+ =

DH+/D and D′
OH− = DOH−/D are the dimensionless diffusion coefficients of H+ and OH– ,

respectively (DH+ = 9.32× 10−9 m2/s, DOH− = 5.26× 10−9 m2/s [47]). At steady state, the

flux of H+ and OH– into the surface due to ionization is zero. Mass conservation of H+

and OH– requires that the difference between the fluxes, i.e., the acidity flux, jac = jH+ −

jOH− , is constant. We replace the concentration of OH– according to the water dissociation

equilibrium cH+ cOH− = K̃w where K̃w = Kw/C
2
0 is the dimensionless equilibrium constant.
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It leads to

jac =
(
cH+ − K̃w

cH+

)
u−

(
D′H+ +

D′
OH−K̃w

c2
H+

)(dcH+

dz
+ cH+

dφ

dz

)
. (8)

In the current model, the resulting variation of pH along the pore described by Eq. (8)

determines the chemical surface charge via the Langmuir isotherm (2), and this chemical

charge in turn couples back into various transport properties. However, except for this

back-coupling, there is no other direct effect of the transport of H+ and OH– . For typical

conditions with moderate pH values (∼ 5 − 9), this is a valid approximation as the salt

concentration is much higher than that of the proton and hydroxide ions. Besides, for acidic

conditions when the proton is dominant (cH+ �
√
K̃w), equation (8) reduces to (7a).

Now we specify the boundary conditions of the problem. The membrane separates two

reservoirs with dimensionless salt concentrations ch and cl, as well as hydrostatic pressures

ph and pl, which are assumed to be the same. The concentrations of H+ ions in the reservoirs

are set by specifying the pH values. The membrane potential ∆φ is defined as the potential

on the low concentration side minus that on the high concentration side. Due to the large

aspect ratio of the pore geometry (Lp � Hp), the membrane-solution interfaces are treated

using the classical Donnan model [48], in which the following boundary conditions are set

at the two pore ends:

p(z) = pres − 2cres + cT (z), (9a)

cT (z) = 2cres cosh (∆φDonnan(z)) , (9b)

cH+(z) = cH+,res exp (−∆φDonnan(z)) or pH(z) = pHres + ∆φDonnan(z)/ ln 10, (9c)

where the pore entrance (z = 0) is connected to the high-concentration reservoir (res = h)

and the pore exit (z = 1) is connected to the low-concentration reservoir (res = l). The

Donnan concentration jumps are described by conditions (9b) and (9c), while condition (9a)

corresponds to the osmotic pressure jump. The Donnan potential ∆φDonnan is defined as the

potential within the pore minus the potential outside at the membrane-reservoir interface.

By inserting c±(z) = cres exp (∓∆φDonnan(z)) into the charge neutrality condition (5), we

have

X(z) = 2cres sinh (∆φDonnan(z)) . (10)

Further inserting the expressions for the chemical and electronic charge (4) and boundary
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conditions (9c) leads to

− N
1 + 10pK−pHres exp (−∆φDonnan(z))

+ cS (φw − φ(z)) = 2cres sinh (∆φDonnan(z)) . (11)

After setting the reference potential at high concentration reservoir to zero for simplicity,

Eq. (11) can be solved with respect to ∆φDonnan(z = 0) = φ(0). The potential φ(1) at the

other end is found by solving the transport equations in the pore, while ∆φDonnan(z = 1)

is again found from the solution of (11). The membrane potential ∆φ is calculated as the

potential variation across the inner coordinates of the membrane φ(z = 1)− φ(z = 0), plus

the Donnan potential jumps at each end, i.e., adding ∆φDonnan(z = 0) and subtracting

∆φDonnan(z = 1).

To solve the system, we substitute dcT/dz in (6c) using (6b), express dX/dz as the sum

of the electronic and chemical parts by (4) and further replace dcH+/dz using (8). Then we

obtain an ordinary differential equation for dφ/dz,

f3
dφ

dz
= sinh(ξ) (cT u− js)− cosh(ξ)Xu− cosh(ξ) jch + f1 f2, (12)

where

f1(cH+) =
dXc

dcH+

=
N K̃(

cH+ + K̃
)2 , f2(cH+) =

(
cH+ − K̃w/cH+

)
u− jac

D′
H+ +D′

OH−K̃w/c2
H+

, f3(cT , cH+) = cT+cS+f1cH+ ,

(13)

and K̃ = K/C0 is the dimensionless equilibrium constant for surface deprotonation. The

terms on the right hand side of (12) represent the potential difference in the pore caused

by diffusion of salt ions with unequal mobilities, solvent flow (streaming potential), Ohm’s

resistance and variation of surface charge, respectively. If the diffusion coefficients of ions

are the same, i.e., ξ = 0, the potential for unequal diffusion will vanish, while if the fluid

velocity u goes to zero, the streaming potential caused by the flow of solute in the diffuse

layer, which is not electroneutral, will disappear. Formally, the scale factor f3 can be seen

as an effective conductivity consisting of three parts representing contributions from solute

concentration, electronic charging and chemical charging. The electronic charging process

increases the total conductivity by redistributing the electronic charge in the conducting

wall to generate a reverse electrical field and reduce the potential drop in the pore, while the

chemical charging process modifies the potential drop through transport of proton, which

modulates the chemical surface charge. The role of chemical charging is more complicated
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FIG. 2. Typical profiles of electrical potential for zero current condition in a membrane pore (a)

without surface charge, (b) with only electronic charge, and (c) with only chemical charge. The

ions diffuse from the left high-concentration reservoir to the right low-concentration one. ∆Φdiff

is the diffusion potential of an uncharged pore with non-conductive surface, and ∆ΦDonnan is the

Donnan potential at the membrane-reservoir interface.

as it not only adds to the conductivity, but also affects the potential difference by the term

f1f2.

Then, we rearrange the equations of the UP model (6) and the flux equation (8) for H+

to a set of ordinary differential equations

dp

dz
= −8αu+X

dφ

dz
, (14a)

dcT
dz

= sech(ξ) (cTu− js)− tanh(ξ) f1 f2 +
(
X + tanh(ξ) f3

)dφ

dz
, (14b)

dcH+

dz
= f2 − cH+

dφ

dz
. (14c)

Note that dX/dz has been expressed through dφ/dz and dcH+/dz using X = Xc + Xe and

Eq. (4), and dcH+/dz is further replaced using Eq. (14c). The shooting method is used to

solve the problem by integrating (14) from z = 0 to z = 1 and matching the hydrostatic

pressure, salt concentration and pH in the reservoir connected to the pore exit.

III. RESULTS AND DISCUSSION

In this section, we analyze the predictions of the steady-state uniform potential model

for different charging conditions on the pore walls. The aqueous NaCl and KCl solutions
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are considered with diffusion coefficients DNa+ = 1.33× 10−9 m2/s, DK+ = 1.96× 10−9 m2/s

and DCl− = 2.03× 10−9 m2/s [47]. First in section III A, we show the results for the case of

only electronic charge demonstrated in Fig. 2b and compare them with the 2D space charge

model as well as the experimental data. Next in section III B, we study the case of only

chemical charge determined by local pH (Fig. 2c). After that, in section III C, we discuss

more general scenarios when both electronic and chemical charge play a role. Most results

are for a condition of zero applied electric current through the membrane jch = 0, and the

resulting membrane potential is presented as the main outcome. In section III D, we also

present results for a non-zero electric current to analyze the electric power production from

a salt concentration difference, i.e., ”osmotic power” or ”blue energy” [10].

A. Case of only electronic charge

Let us start with the case where only electronic charge is on the pore walls. Throughout

this section, we assume that the total electronic charge Xe is zero, i.e., no extra electrons

are injected or withdrawn from the membrane.

If the mobilities or diffusivities of the cation and anion are different, there is a spontaneous

electrical field generated to ensure local electroneutrality when the ions diffuse from the high-

concentration side to the low-concentration side. For NaCl/KCl, anions move faster than

cations, so that the electrical potential drops along the membrane to reduce the speed of

the anions and raise the speed of the cations (Fig. 2a). For an uncharged, non-conductive

membrane, this diffusion potential across the membrane can be calculated as [33]

∆Φdiff = φT
D+ −D−
D+ +D−

ln
Ch
Cl

= φT
exp(−2ξ)− 1

exp(−2ξ) + 1
ln
Ch
Cl
. (15)

If the membrane pore wall is electron conducting, the spontaneous electrical field that

develops in the pore interior will exert an electrical force on the electrons in the pore,

which will re-distribute to guarantee equipotential in the conducting pore wall. For the

case illustrated in Fig. 2b, the diffusion potential generates an electrical force along the

membrane and pushes the electrons in the membrane from the low-concentration side to

the high-concentration side. This leads to a negative(positive) surface charge near the high-

concentration(low-concentration) side. Consequently, the Donnan potentials at both ends,

acting in the same direction, enlarge the total potential drop across the membrane. This
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enhancement effect has been reported for C-Nafen membrane [33], which was prepared from

alumina nanofibers covered by a conductive carbon layer.
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FIG. 3. Membrane potential of conductive C-Nafen membrane for different concentration ratios in

(a) KCl and (b) NaCl aqueous solution. Data points and results of 2D space charge model without

Stern layer shown in solid blue lines are from Ryzhkov et al. [33]. Dashed red lines are results

of 1D uniform potential model with CS = 0.1, 1, 10 F/m2, and dash-dotted lines are the diffusion

potentials in uncharged pores with non-conductive surface. Hp = 8 nm, Cl = 0.1 mM for KCl and

1 mM for NaCl.

Figure 3 shows the comparison of measured membrane potential with model predictions

based on the 1D UP model and 2D SC model for a 8 nm-radius pore. Note that even for KCl

with a minor difference in diffusion coefficients, which are usually ignored in some theoretical

studies, the membrane potential can be enhanced to a few times or even dozens of times with

the increase of the concentration ratio. The 2D SC model shown as blue lines has no Stern

layer [33], or equivalently, assuming CS → ∞. Nevertheless, the Stern layer is necessary in

the 1D UP model to relate the charge density with the potential difference Φw − Φ across

the interface. Three different values of the Stern layer capacitance CS are used in the UP

model shown as dashed lines in Fig. 3. A good agreement is obtained for CS = 1 F/m2, and

this value will be used throughout the paper. Theoretically, the capacitance CS in the UP

model can be pushed to a large value to make a direct comparison with the SC model, and

the difference between them is ascribed to the one-dimensional assumption for a pore with
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finite radius. Figure 4 further shows a comparison between the UP model and the SC model

of the profiles of pressure, concentration, electrical potential and surface charge density in a

pore with NaCl and radius Hp = 8 nm, Ch = 10 mM, Cl = 1 mM. The two have quantitative

agreement and it is found that this agreement is reasonably well for pore sizes smaller than

10 nm with the concentration up to 1 M. In this sense, the capacitance in the UP model can

be seen as a good fitting parameter, which mitigates some error from the one-dimensional

assumption.
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FIG. 4. Profiles of (a) pressure, (b) cation and anion concentration, (c) electrical potential and (d)

surface charge density in a 8 nm-radius pore filled with NaCl at zero current. Ch = 10 mM and

Cl = 1 mM. Solid lines are results of the 2D space charge model without Stern layer, and dashed

lines are results of the 1D uniform potential model with CS = 1 F/m2.

Figure 5 shows the effect of concentration, pore radius, and diffusion coefficients on the

membrane potential. For all the conditions, the UP model agrees well with the SC model.

When the reservoir concentration or the pore radius increases, the Donnan potential at the

membrane-reservoir interface decreases according to

∆ΦDonnan = sinh−1
( σ

FHpCres

)
, (16)

where σ is the surface charge density at the pore end and Cres is the corresponding reser-

voir concentration. Therefore, the magnitude of the membrane potential declines as the
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enhancement effect via the Donnan potential drops. When the ratio between the diffusiv-

ities D+/D− reduces, the diffusion potential becomes stronger and it leads to an increase

of the electronic surface charge density σe. From equation (16), it is clear that the Donnan

potential, and thus the membrane potential will be enlarged.
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FIG. 5. Parametric study of (a) concentration (Hp = 8 nm), (b) pore radius (Cl = 1 mM), and

(c) diffusion coefficients (Hp = 8 nm, Cl = 0.1 mM) on membrane potential in cylindrical nanopore

filled with NaCl. Dashed lines are results of uniform potential model with CS = 1 F/m2, solid lines

are that of the 2D space charge model without Stern layer, and dash-dotted lines are the diffusion

potentials in uncharged pores with non-conductive surface.

B. Case of only chemical charge

In this section, we consider the case where the membrane is charged only by chemical

groups. The charge regulation by pH is considered by incorporating the transport equation

of proton and hydroxide ions described by Eq. (8). It has been shown in recent studies that

this regulation mechanism has significant effect on ionic conductance [49] and in electro-

osmotic hysteresis [46].

The pH in both reservoirs is kept the same in all cases. However, due to the Donnan poten-

tials at each end, the proton concentration(pH) increases(decreases) at the low-concentration

end (see Fig. 7a), lowering the surface charge density via combining with the surface groups.

The variation of surface charge results in an electrical field acting opposite to the concen-

tration gradient, so the potential increases along the pore, as depicted in Fig. 2c. This

corresponds to the term f1f2/f3 in equation (12). If the surface charge is not dependent on

pH, this term vanishes and it reduces to the constant surface charge model.
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FIG. 6. Membrane potential across 4 nm- and 26 nm-width slit channels filled with KCl. Experi-

mental data points are from Kim et al. [25] at zero current. Solid lines are results of the uniform

potential model with pH-dependent chemical charge (silica surface with pK = 7.5 and N = 8 nm−2,

pH = 5.6 for both reservoirs), while dashed lines are results of the constant surface charge model

(σ = −2 mC/m2).

Figure 6 shows the membrane potential across 4 nm and 26 nm nanoslit channels for dif-

ferent concentration ratios, with the lower concentration fixed in panel (a) and the higher

concentration fixed in panel (b). In general, as the concentration ratio increases, the mem-

brane potential increases mainly due to the contribution of the Donnan potential. However,

as the concentration ratio exceeds around 100 with a fixed lower concentration (Fig. 6a), the

Donnan potential at the high-concentration end drops to around zero because the surface

charge is much lower than the ionic charge carried by cation and anions. Therefore, the

membrane potential reaches a plateau with further increase of the concentration ratio. This

scenario is predicted by the constant surface charge model with σ = −2 mC/m2.

However, the experimental data in Fig. 6a shows a systematic decrease of the membrane

potential when the concentration ratio becomes relatively large for both 4 nm and 26 nm

channels. This decrease of membrane potential can be partly captured by the current model,

in which the proton transport and the variation of chemical charge are considered. The

reason behind this is that the contribution of potential increase owing to the variation

of chemical charge diminishes as the conductance of the pore increases with the reservoir

16



0 0.2 0.4 0.6 0.8 1
z  

4

4.5

5

5.5

6

pH
  

(a)

Ch

0 0.2 0.4 0.6 0.8 1
z  

-20

0

20

80

100

  (
m

V)

Ch

(b)

FIG. 7. Profile of (a) pH and (b) electrical potential of a 4 nm-width slit channel with chemical

surface charge. Cl = 0.1 mM and Ch increases from 10, 100 to 1000 mM.

concentration. Specifically, when the concentration Ch is relatively low, the co-ions are

mostly repelled from the pore and the conductance is controlled by the surface charge density.

Nevertheless, when the concentration Ch becomes higher, both the counter-ions and co-ions

can go into the pore and the conductivity in this case is controlled by the ionic charge, thus

leading to a dramatic increase of the total conductance. This weakens the potential increase

owing to the variation of the chemical charge (Fig. 7).

The current UP model achieves a better agreement with the experimental data compared

with the constant surface charge model without any fitting procedure. Parameters used

in the 1-pK Langmuir isotherm, namely, the equilibrium constant of surface deprotonation

and the number of surface sites, are well-constrained values reported in the literature [1].

One may wonder if the assumption that protons and hydroxide ions do not contribute to

the charge density and flux leads to the unexpected decrease of membrane potential in the

current model. Considering the relatively high salt concentration and medium pH, this

assumption should be reasonable. In fact, we performed further simulations using a full

multi-component model including protons and hydroxide ions in charge density and flux.

This extended model gives quantitatively consistent results with the current model and

predicts a decreasing membrane potential as well.

Another possible reason for the decrease of the membrane potential is due to incomplete

mixing in the reservoir and non-ideality of the electrolyte solution at high concentration,

which are out of the scope of this paper.
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C. Combination of electronic and chemical charge

Let us now consider the case when the total surface charge results from the presence of

both electronic and chemical charge. Although they are not directly coupled, we have to

determine them consistently since they are correlated by the the potential distribution in

the pore.

The factor N /cS is used to characterize the ratio between the electronic and the chemical

charge, where N is the dimensionless number of surface sites for chemical charge, and cS

is the dimensionless Stern layer capacitance. In fact, the amount of the chemical charge

can be characterized by the maximum possible charge density, i.e., N e, while the amount

of the electronic charge can be characterized by the product of the capacitance CS and the

characteristic potential RgT/F . The ratio between the two gives N /cS.

Figure 8 shows the change of the membrane potential with N /cS for different pH. In

general, if N � cS, the chemical charge will dominate and become the main mechanism

for membrane potential generation (Fig. 2c), while if N � cS, the electronic charge domi-

nates and the charging mechanism follows that shown in Fig. 2b. In the chemical-charge-

dominated regime, the difference in ion mobilities giving rise to the diffusion potential plays

minor role, so that the membrane potential is the same for both KCl and NaCl. However, the

difference in mobility, determining the enhancement effect, strongly influences the membrane

potential in the electronic-charge-dominated regime. In addition, due to the pH-dependence

of chemical charge, the transition will shift towards the chemical-charge-dominated regime

if the reservoir pH increases.

D. Energy generation from concentration difference

If connected to an external load, a permselective membrane can convert the osmotic

energy from a concentration difference to electrical energy. If the membranes are stacked

in a way of alternating permselectivity, it forms the process of reverse electrodialysis [10,

21, 28, 29]. The power density of this conversion is the product of the electric current

density and the potential difference across the membrane, which is the membrane potential

at open-circuit condition, i.e., zero electric current. The power density reaches zero at both

open-circuit condition and short-circuit condition, where the maximum electric current is
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FIG. 8. Membrane potential with both electronic and chemical charge for different N/cS ratios at

zero current with CS fixed at 1 F/m2. N is the dimensionless number of surface sites for chemical

charge, and cS is the dimensionless Stern layer capacitance (Ch = 10 mM, Cl = 0.1 mM, pK = 7.5

and Xe = 0).

reached. It typically follows a parabola profile with the electric current, and the maximum

power density is achieved at around the half of the maximum current density (Fig. 9). For

a negatively charged membrane (i.e., cation-selective), the cation is the main charge carrier

and the energy conversion process is operated at a positive current (right branch of Fig. 9).

Extra negative electronic charge can be supplied to the pore wall to improve the performance

of the membrane. As shown in Fig. 9a, the maximum power density almost doubles from

22 mW/m2 to 42 mW/m2 when the extra volumetric electronic charge density X
∗
e = XeC0

reaches −1 mM in the pore volume, equivalently, about −0.38 mC/m2. At the same time,

the corresponding current density for the maximum power density shifts from 1.06 A/m2 to

1.63 A/m2. In contrast, if electrons are withdrawn from the pore, the membrane becomes

positively charged (i.e., anion-selective) and the direction of the electric current is reversed

to generate power (left branch of Fig. 9). Because of the negative chemical charge, it requires

more electronic charge to reach same power density for this case.

The N /cS ratio in Fig 9 is about 6.2. In this case, according to Fig. 8b, the membrane

potential is very sensitive to the change of pH. A slight increase of pH to 6 gives rise to

more negative chemical charge and makes the power density higher when I > 0. At the
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FIG. 9. Osmotic power density generated from a concentration difference (Ch = 1 mM, Cl =

0.1 mM) by an 8 nm-radius pore filled of NaCl at (a) pH = 5.5 and (b) pH = 6. The pore bears

both electronic charge (CS = 1 F/m2) and pH-dependent chemical charge (N = 1 nm−2, pK = 7.5).

A different electronic charge is supplied or withdrawn to reach a certain total volumetric electronic

charge density X
∗
e.

same time, it requires further withdrawal of electrons in comparison to the case of pH=5.5

to overcome the chemical charge and change the polarity of the membrane. Note that the

concentrations used in Fig. 9 (Ch = 1 mM, Cl = 0.1 mM) are relatively low, so only a small

amount of extra electronic charge supplied makes large impact on the power density. At a

higher salt concentration, however, more electronic charge is required to increase the power

density.
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The overall energy efficiency of this conversion process is defined as [20, 21, 37]

η =
jch ∆φ

jions ln(ch/cl)− 2u(ch − cl)
, (17)

which is the ratio of the generated electrical power to the Gibbs free energy of mixing

taking into account of the adverse effect of advection. It measures the effectiveness of the

membrane in overcoming the dissipation effect by entropy generation. Note that the energy

consumption by supplying the extra electronic charge is not considered, since the charge

density is fixed in the energy generation process if there is no electron leakage by Faradaic

reactions. Like the power density, the energy efficiency increases with the addition of negative

electronic charge. Energy efficiency in Fig. 10 follows a similar trend as the power density in

Fig. 9. When operated at positive current, the energy efficiency reaches 30% for a current

density of 1.2 A/m2 at pH = 5.5, and 44% for a current density of 1.5 A/m2 at pH = 6 with

an extra total volumetric electronic charge density of −1 mM. In contrast, when charged

positively and operated at negative current, the energy efficiency declines to less than 5%

with X
∗
e = 5 mM at pH=5.5 and X

∗
e = 15 mM at pH=6.

Figure 11 shows the optimum current density to reach the maximum power density and

energy efficiency when the pore is charged with different total electronic charge density X
∗
e.

While the optimum current density for power density IPmax is sensitive to a change in X
∗
e,

the optimum current density for energy efficiency Iηmax is much less dependent on X
∗
e. A

good operation condition for the current density may be in between of these two values IPmax

and Iηmax .

IV. CONCLUSIONS

In this work, we have developed a theoretical description of ion transport in nanoporous

membranes in the presence of both electronic and chemical charge on the pore surface.

The former is induced by the electrons in the conductive pore surface, while the latter

originates from ionization of surface chemical groups. Even if no external charge is injected,

the electronic charge can redistribute along the pore, leading to intriguing profiles in ion

concentration and potential (see Fig. 4). The pH-dependent chemical charge is regulated by

proton transport, giving rise to a potential difference within the membrane. When both are

present, the two types of surface charge are correlated by the potential distribution in the
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FIG. 10. Energy efficiency of osmotic power generated from a concentration difference (Ch = 1 mM,

Cl = 0.1 mM) by an 8 nm-radius pore filled of NaCl at (a) pH = 5.5 and (b) pH = 6. The pore bears

both electronic charge (CS = 1 F/m2) and pH-dependent chemical charge (N = 1 nm−2, pK = 7.5).

A different electronic charge is supplied or withdrawn to reach a certain total volumetric electronic

charge density X
∗
e.

pore.

The electrical potential across the membrane is investigated at a zero electric current

condition. The electronic charge is found to strongly enhance the diffusion potential through

redistribution of electrons, even for KCl with a minor difference in diffusion coefficients, while

the pH-dependent chemical charge leads to an increase of the electrical potential within the

membrane if the pH in both reservoirs is kept the same. Our one-dimensional model shows
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good agreement with both experimental data and results of two-dimensional space charge

model as long as the pore size is relatively small compared with the Debye length. In

addition, the performance of the membrane used for energy conversion from a concentration

difference is also investigated for non-zero electric currents. By tuning electronic charge of

the membrane, the selectivity of the membrane can be controlled. For example, if extra

negative(positive) charge is supplied to the cation-selective(anion-selective) membrane, the

power density and energy efficiency for RED can be improved. This flexible control of the

membrane selectivity may open opportunities for new designs in RED and other relevant

applications.
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